

HOSTAFORM® UV25Z XAP®2

HOSTAFORM® UV25Z XAP2 is a nominal 2.5 melt flow rate acetal copolymer which has been specially stabilized to prevent discoloration and deterioration of mechanical properties from ultraviolet light exposure. The material is available in precolored black or colors, with reduced emissions especially for automotive interior application. Emission according to VDA 275 < 5 mg/kg (natural grades) Emission according to VDA 275 < 5 mg/kg (colored grades).

													4.5		
Н	r	റ	$\boldsymbol{\cap}$	ш	IC.	ΙI	ın	١Ť١	റ	rr	n	2	ŤΙ	io	n

1 Toddot imormation			
Resin Identification	POM		ISO 1043
Part Marking Code	>POM<		ISO 11469
Rheological properties			
Melt mass-flow rate	2.2	g/10min	ISO 1133
Melt mass-flow rate, Temperature	190		130 1133
Melt mass-flow rate, Temperature Melt mass-flow rate, Load	2.16		
Melt mass-now rate, Load	2.10	ĸy	
Typical mechanical properties			
Tensile modulus	2400		ISO 527-1/-2
Tensile stress at yield, 50mm/min		MPa	ISO 527-1/-2
Tensile strain at yield, 50mm/min	10		ISO 527-1/-2
Charpy notched impact strength, 23°C		kJ/m²	ISO 179/1eA
Poisson's ratio	0.38 ^[C]		
[C]: Calculated			
The condition of the			
Thermal properties			
Melting temperature, 10°C/min	165		ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	90	°C	ISO 75-1/-2
Physical/Other properties			
Density	1400	kg/m³	ISO 1183
Donoity	1400	Ng/III	100 1100
Injection			
Drying Recommended	no		
Drying Temperature	100	°C	
Drying Time, Dehumidified Dryer	3 - 4		
Processing Moisture Content	≤0.2		
Melt Temperature Optimum	195		
Min. melt temperature	180		
Max. melt temperature	210		
Screw tangential speed	≤0.3		
Mold Temperature Optimum	100		
Min. mould temperature		°C	
Max. mould temperature	120		
Hold pressure range	60 - 120	мРа	

Printed: 2025-05-30 Page: 1 of 2

4 MPa

Revised: 2024-07-12 Source: Celanese Materials Database

Hold pressure range Back pressure

HOSTAFORM® UV25Z XAP®2

Characteristics

Processing Injection Moulding

Delivery form Pellets

Special characteristics U.V. stabilised or stable to weather, Low emissions

Additional information

Injection molding Preprocessing

To achive low emission values pre drying using a recirculating air dryer (100 to $120 \, ^{\circ}\text{C}$ / max. 40 mm layer / 3 to 6 hours) is recommended.

Max. Water content 0,1 %

Processing

Standard injection moulding machines with three phase (15 to 25 D) plasticating screws will fit.

Postprocessing

Postprocessing conditioning and moisturizing are not required. It may be necessary to fixture large or complicated parts with varying wall thickness to prevent warpage while cooling to ambient temperature.

Processing Notes Storage

The product can then be stored in standard conditions until processed.

Printed: 2025-05-30 Page: 2 of 2

Revised: 2024-07-12 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.